Design of a Differential Drive Mobile Robot Platform for Use in Constrained Environments
نویسنده
چکیده
Mobile robotics is a growing trend in recent years as mobile robots are being used in service as well as industrial sectors. This paper introduces a novel design of a mobile robot platform for use in constrained workplaces. The constrained environments are nothing but congested places, for example hospitals, ware houses, offices, shop floors where various equipments and machineries are to be arranged in small areas. For robots mobility in such places, various methods are being used such as differential drive system, Omnidirectional mobility etc. This paper presents the design of mobile robotic platform with application of the differential drive system for enhancing mobility of the robotic platform. The 3-D Model of mobile robot is prepared in CAD software CATIA V5R19. The shape of the robot is selected as rectangular, with two driving wheels and two caster wheels. The driving wheels are located at the front side of the robot, which helps the robot to drive on to the slope. Two caster wheels are attached at the back side of the robot for stability purpose. In this robotic platform, the two driving wheels are driven by using independent motors, for forward, backward as well as rotational motion. This designed and developed robotic platform has the capability to implement algorithms for path planning, path control, dynamic steering, obstacle avoidance, position control, image recognition etc.
منابع مشابه
Reduction of Odometry Error in a two Wheeled Differential Drive Robot (TECHNICAL NOTE)
Pose estimation is one of the vital issues in mobile robot navigation. Odometry data can be fused with absolute position measurements to provide better and more reliable pose estimation. This paper deals with the determination of better relative localization of a two wheeled differential drive robot by means of odometry by considering the influence of parameters namely weight, velocity, wheel p...
متن کاملOptimal Trajectory Planning of a Mobile Robot with Spatial Manipulator For Spatial Obstacle Avoidance
Mobile robots that consist of a mobile platform with one or many manipulators mounted on it are of great interest in a number of applications. Combination of platform and manipulator causes robot operates in extended work space. The analysis of these systems includes kinematics redundancy that makes more complicated problem. However, it gives more feasibility to robotic systems because of the e...
متن کاملExperimental Analysis for Measuring Errors in Wheeled Mobile Robots (RESEARCH NOTE)
This paper presents experimental analysis of wheeled mobile robots. Mathematical modelling of the mobile robot is presented. The mobile robots consist of an omni-directional and three differential drive mobile robots are tested and moved in given trajectories and the systematic errors of the robots are determined. A new method for omni-direction mobile robot was introduced in which the robot wa...
متن کاملMobile robot wall-following control using a behavior-based fuzzy controller in unknown environments
This paper addresses a behavior-based fuzzy controller (BFC) for mobile robot wall-following control.The wall-following task is usually used to explore an unknown environment.The proposed BFC consists of three sub-fuzzy controllers, including Straight-based Fuzzy Controller (SFC),Left-based Fuzzy Controller (LFC), and Right-based Fuzzy Controller (RFC).The proposed wall-...
متن کاملA Novel Multimode Mobile Robot with Adaptable Wheel Geometry for Maneuverability Improvement
In this paper, an innovative mobile platform is presented which is equipped by three new wheels. The core of the new idea is to establish a new design of rigid circular structure which can be implemented as a wheel by variable radius. The structure of wheel includes a circular pattern of a simple two-link mechanism assembled to obtain a wheel shape. Each wheel has two degrees of freedom. The fi...
متن کامل